
Chapter 2

Problems Set-up

This section is to understand the challenges of 3D vision problem, and what should
we learn to solve it - this conducts to the contents of later chapters. Thus it is
expected to focus on the main idea and scope, even for Maths, but not a detailed
derivation of maths. Do not be afraid of if you do not understand a particular part
as you will learn it in later chapters.

For a Robot or an Autonomous car to navigate autonomously on road, it is needed
that it has a deep understanding of 3D environment which is at utmost important so
that it can do path planing for obstacle avoidance or keeping a right path to reach
to a target location. Assume that we have a robot or an autonomous car which
mounts many sensors on it. Sensors might include LIDAR, RADAR, SONAR, PMD-
camera, Stereo-Cameras, RGB-D Camera, Monocular-Camera, etc. Point Cloud (a
set of 3D points) of surrounding environment is captured by active sensors (LIDAR,
RGB-D camera, RADAR, SONAR, etc.) which tells us about objects’ positions and
structures. Due to a scattering effect (a farther object gets much less points then
a near one), we actually do not get a dense Point Cloud, but a sparse one, which
leads to the fact that partially only some parts of objects are captured by such kind
of sensors.

RGB-D, PMD camera, or Kinect-camera can give a dense Point Cloud, and even
telling the texture of corresponding 3D structure because it has an imaging sensor in
it. Howver, those use infra-red light in their modulation, which are easily confused
by the full spectra ligth from the sun - and thus they very not reliable in outdoor
environment [14].

Stereo-vision, utilizing the overlapped area viewed by both camera, can provide a
dense Point Cloud, but only for that overlapped region [19]. Anyhow camera is a
passive sensor and works in a projective space, which limit its capacity in stably

8



Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

Figure 2.1: Autonomous Mobile Robot at my former Robotic Lab, at University of
Siegen (Champion ELROB 2007, First Innovation Award ELROB 2010).

capturing 3D information of environment.

A monocular camera basically only capture a 2D image. In computer vision, based
on the idea of Structure from Motion, it is possible for it to estimate 3D positions
of static environment.

In the scope of this book, we want to have a concrete understand of 3D environment
from its structure and texture, regardless sensors in use. In fact, this means we need,
in principle, a mechanism for capturing 3D structures and a camera for taking 2D
images.

This leads to two core-problems to be solved as follow

• Mapping environmental structure and its texture; or a mapping between Point
Cloud and 2D image

• Simultaneous Localization and Map Updating (SLAM)

Recently, due to a need of having a high accuracy dense Point Cloud, researchers
have paid much attention on a mutual interaction between 2D and 3D spaces: the
idea is to initially start with a given Point Cloud from an active sensor, but then by
mapping and tracking in 2D image, it is possible to reconstruct a dense Point Cloud
with a quite high accuracy and stability. Still this idea relies on the fundamental
set-up of SLAM solution, therefore one can easily understand and realize such by

9



Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

following steps from the SLAM solution.

2.1 Mapping environmental structure and its tex-

ture

In many Robotics systems, researchers directly use Point Cloud given by a LIDAR
or active sensors. Thus, they only need to do a 2D-3D mapping - note that this
means both mapping from 3D world to 2D image and vice versa.

Image Coordinate ZX

Y

Camera Coordinate

W

U

V

World Coordinate

y

x

P

Laser Scanner 

Coordinate

E

C

D

Figure 2.2: Mapping between LIDAR and Camera

For any sensors, before usage we should do sensor calibration to know where it is in
our system and its principle operation. Thus, one of a key topic to learn is Camera
Calibration as a pre-requisite to lear 3D vision. In this book, we will introduce
the optic in the chapter 4. LIDAR calibration is trivial to be done, which is not
described in this document.

Since sensor calibrations are done, we know the extrinsic transformation between

10



Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

LIDAR and Camera coordinates, denote as ΩC2L.

A world point P is viewed by a LIDAR at time t with a transformation from world
to LIDAR denoted by ΩL2W .

Pl = ΩL2WP

A projection of P on image

p = ΩC2WP = ΩC2WΩW2LPl (2.1)

By doing such projection we can associate all 3D points from Point Cloud to image
domain. However Point Cloud is a set of 3D points which are sparse, and thus
a 3D rendering of environment is NOT perfect. Note that by Laser Scanner we
cannot know which point matched to the other because they are just simple 3D
point without any discriminative feature. In contrast, it is possible to do such in
image domain as we can have many different descriptors to do that.

To improve the density of 3D points, we first track the pixel p in the image from t

to t′. A world point P is viewed by the camera at time t′.

p′ = Ω′C2WP

Combine the above equations, we have

p′ = Ω′C2WΩW2LPl (2.2)

From a set of points p which satisfy Equation 2.1, we can estimate the transformation

ΩC2WΩW2L = pvecP
T
l−vec(Pl−vecP

T
l−vec)

−1 = M1

where a set of points p

pvec =









p1
p2
...

pn









11



Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

A set of Pl points denoted by

Pl−vec =









Pl1
Pl2
...

Pln









Therefore,

ΩC2W = M1Ω
−1
W2L (2.3)

We can apply Land-Mark based approach or using IMU to determine ΩW2L.
This is trivial, so do not discuss here.

From a set of points p′ which satisfy Equation 2.2, we can estimate the transforma-
tion

Ω′C2WΩW2L = p′vecP
T
l−vec(Pl−vecP

T
l−vec)

−1 = M2

Ω′C2W = M2Ω−1W2L (2.4)

Equations 2.3 and 2.3 can be double-checked as follow

Ω′C2WΩ−1C2W = M2M
−1
1

Since pvec, Pl−vec,ΩW2L are known, we can compute any transformation of camera
poses.

Since knowing the camera motion or camera poses, by tracking points
in images, we can triangulate them to obtain 3D points in world. This
explains why we can achieve a dense Point Cloud. Examples of 3D rendering
using such 2D-3D mapping are illustrated in Fig.2.3.

Overall, to understand 2D-3D Mapping, you need to learn at least

• Basics of Computer Vision and 3D Geometry

• Camera Calibration

• LIDAR Calibration

• Depth or Inverse Depth estimation

12



Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

Figure 2.3: Examples of 2D-3D mapping between LIDAR and Camera [13]

• Machine Learning: Kalman Filter, Particle Filter, Bundle Adjustment, Gra-
dient Descent, Least Square Solutions

2.2 Simultaneous Localization and Map Updating

(SLAM)

In many Automotive systems, LIDAR is not preferable due to its expensiveness and
low reliability in a mass production. In this case, only camera, RADAR, and SONAR
are commonly used. For the purpose of reconstructing a dense Point Cloud of
environment, it is done mainly by cameras because RADAR or SONAR only provide
a very sparse data of object position (exceptionally modern near-range RADAR
can provide a more details of objects’ poses, which however is still pretty much in

13



Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

research & prototype phase, and thus we do not investigate in this document). By
using a camera, based on the idea of Structure from Motion, we can reconstruct
”static” environment if we know the motion of camera’s pose. Also, if we
know the positions of surrounding objects we can then estimate the motion of
camera’s pose. The problem of estimating both localization and 3D reconstruction
is called the SLAM problem. Unfortunately we do not know either the motion of
camera’s pose or the positions of surrounding objects. Therefore the SLAM problem
is well-known to be a chicken and eggs problem.

2.2.1 Abstract Formulation

Assume to have n 3D points in world, {P1, P2, .., Pn} which are corresponding with
N pixels in image, {p1, p2, .., pn}. A transformation from a world coordinate to a
camera coordinated is denoted by ΩCW . A projection from the point in the camera
coordinate into an image plane is denoted by ΩIC, see Fig.2.4

Z

X

Y

W

y

x

U

V

Camera Coordinate

Image Coordinate
World Coordinate

Figure 2.4: A simple Pin-hole camera model

Hence at location j of camera, mapping from 3D Pi{U, V,W} to 2D pi{x, y}

pi = Ωj
ICΩ

j
CWPi , ∀i ∈ {1, n}

Mapping from 2D pi{x, y} to 3D Pi{U, V,W}

Pi = (Ωj
CW )−1Ωj

CI pi , ∀i ∈ {1, n} (2.5)

14



Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

Note that due to the imperfection of lens or camera component device, it is not
always possible to have a parametric inverse Ωj

CI = (Ωj
IC)

−1, especially for a Fisheye
camera.

Camera moves to a location k, by tracking the world point Pi, we see it at p
′

i in the
image coordinate

p′i = Ωk
ICΩ

k
CWPi , ∀i ∈ {1, n} (2.6)

Substitute Equation 2.5 into Equation 2.6,

p′i = Ωk
ICΩ

k
CW (Ωj

CW )−1Ωj
CI pi , ∀i ∈ {1, n} (2.7)

Multiply pi in both side of Equation 2.7,

p′ip
T
i = Ωk

ICΩ
k
CW (Ωj

CW )−1Ωj
CI pip

T
i , ∀i ∈ {1, n} (2.8)

Assume that camera is calibrated, then Ωj
IC and Ωk

IC are known or can be estimated
for each pi, so called intrinsic parameters. {(pi, p

′

i), ∀i ∈ (1, n)} are known from an
image tracking process.

Equation 2.8 is in form of Ax = b. Thus, one needs to learn how to solve a linear
equation in form of Ax = b. This is introduced in Chapter 3. Note that solving
such matrix equation is not simple because it is not necessary to give a unique
solution or having noise from the inputs (pi, p

′

i), and thus we need to work around
with Machine Learning to stabilize our solution, which is described in Chapter 5.
Due to the fact the Camera System, similar to Human-Eye System, works on a
projective space, and thus estimating Scale is a big challenge or solution for the
linear equation can have many at different scales. In many recent works, a bundle
adjustment technique is used for a back-end of SLAM for a global optimization of
all camera poses and 3D points.

To ease the problem, some assume to know a set of world points {PUi,Vi,Vi
, i ∈ (j, k)}

which belong to a plane (typically Robotics researchers always assume that a small
area at very front or back of the robot is road or a planar surface). In this case, we
have an additional equation,

AU +BV + CW = 1 (2.9)

A combination of of two equations 2.8 and 2.9 can lead to a unique solution. Due
to a computational expensiveness in its processing (RANSAC selection of points

15



Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

and solutions, essential matrix decomposition, etc.) this approach can only provide
a small set of 3D points for real-time application, and thus it is mainly used for
estimating the Localisation - This solution is well-known in the computer vision
community as often called Visual Odometry, see Fig.2.5.

Figure 2.5: Example of Visual Odometry Results: Ground-Truth in Red; Our esti-
mation in Blue. Our estimation is very good so that it is almost overlapped with
the Ground-Truth

Alternatively to ease the problem, some can use additional sensors, like IMU or
Vehicle CAN, to estimate the motion of vehicle or car, and thus deriving the motion
of the camera. Whereby it becomes a triangulation problem with given camera
poses. Example of 3D Reconstruction is shown in 2.6.

Figure 2.6: Example of 3D reconstruction [13]

Meanwhile camera pose is moving in centimetre range and we have to triangulate
points at 10 meter range. This requires a very high accurate of camera pose estima-

16



Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

tion in order to correctly triangulate the points. Because motion estimation given
by IMU or Vehicle CAN cannot be so accurate, it is usually a refinement step, local
or global optimization process needed.

Overall, to understand SLAM, you need to learn at least

• Basics of Computer Vision and 3D Geometry

• Camera Calibration

• Epipolar Geometry

• Interpolation of Epipolar Curbs to apply Epipolar Geometry property for Fish-
eye cameras

• Depth or Inverse Depth estimation

• Machine Learning: Kalman Filter, Particle Filter, Bundle Adjustment, RANSAC-
based optimization, Gradient Descent, Gaussian-Newton, Levenberg Marquardt,
and other Least Square Solutions

2.2.2 Direct-SLAM

The section 2.2.1 is known as Indirect-SLAM even though all fundamentals of SLAM
is described there. The term ”Indirect” was given only when there was a new SLAM
technique introduced, the so called Direct-SLAM. The meaning of Indirect is that it
uses traditional computer vision techniques, for example forming feature descriptors
or building up discriminative representations of image, to enable feature tracking
for image registration. The Direct-SLAM, on the other hand, directly associate
photometric data between images, for example pixel intensity or colour, etc. Since
we are directly matching pixels, non-discriminative features, between two images it
is technically impossible to do it correctly following a normal matching procedure
as commonly used in Indirect-SLAM method. First, formulation of Direct-SLAM is
partially similar to an Indirect-SLAM, as mentioned above, but instead of tracking
features between images, we directly minimizing the photometric errors between
pixels, between the current image I and the reference image Iref [3]

E(ξ) =
∑

i
(Iref (pi)− I(ω(pi, Dref (pi), ξ)))

2 (2.10)

Where pi is a pixel in Iref ; ξ ∈ SIM(3) in Lie-Algebra, which will be explained later
in Chapter 3; D is the inverse depth.

17



Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

Figure 2.7: Example of Direct-SLAM result [15]

Figure 2.8: Example of Direct-SLAM result [5]

In general, if searching randomly through the whole image I, we would find so many
pixel which has similar value as of pi in Iref because it is just simply an intensity rang-
ing from 0 to 255. Therefore, the idea is to find a transformation which leads us to a
correct solution or a correct matching. For that aim, we minimize the photometric
error subject to a transformation ξ - this can be done by applying Gaussian-Newton
or Levenberg Marquardt. For example using a Gauss-Newton second-order approxi-

18



Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

mation of E, let denote the residual ri = (Iref (pi)− I(ω(pi, Dref (pi), ξ))), with some
Maths operations, we have

δξ(n) = −(JTJ)−1JT r(ξ(n)) (2.11)

Starting with an initial estimate ξ(0), after n iteration, we expect to reach a conver-
gence, or found a pixel location which minimizes the photometric error. Importantly,
J is the Jacobian of the residual with respect to the transformation, and thus to
compute J it is much easier to use the Lie Group transformation ξ, instead of a
common Euclidean transformation. This will be explained in Chapter 3.

Additionally, in a Pinhole camera, we should utilize its Epipolar Geometry property
to constraint the solution space; in a Fisheye camera, we can interpolate Epipolar
Curbs to constraint the solution space.

Overall, to understand Diect-SLAM, you need to learn at least

• Basics of Computer Vision and 3D Geometry

• Camera Calibration

• 3D Transformation Group or Lie Groups SO(3), SE(3), SIM(3)

• Epipolar Geometry

• Interpolation of Epipolar Curbs to apply Epipolar Geometry property for Fish-
eye cameras

• Depth or Inverse Depth estimation

• Machine Learning: Kalman Filter, Particle Filter, Bundle Adjustment, RANSAC-
based optimization, Gradient Descent, Gaussian-Newton, Levenberg Marquardt,
and other Least Square Solutions

19


