
Chapter 3

Fundamental Maths

To be clear that this section is to introduce the meaning of Maths linked to real
problems to be solved in 3D vision, but not intended to give all details of Maths.
For a coherent understanding of Maths, please refer to Calculus 1 and 2 of Gilbert
Strang [17].
Whole story is to solve the basic linear equation

AX = B (3.1)

Eq.3.1 can be simple or complex depending on its dimensionality and non-linearity,
even though it is linearised in a linear representation form. Further more, in many
cases, it is not possible to have an absolute solution, but a rough solution of mini-
mization

MinX ||AX − B||2 (3.2)

Step by step we will explain why many real problems can be formulated in a linear
form of linear algebra or being approximated through a linearising process. All ends
up with the same optimization Eq.3.2.

Real-life example
On Christmas day (24.12.2018), we together went by train to visit Frankfurt Shop-
ping Centre, Germany. Onward we paid 7 Euro for train tickets in which 2 euro per
child and 3 Euro per adult. In the way back, after 12:00, there is a discount from
RMW-train company that each ticket is 1 Euro for everyone as a Christmas gift.
Whereby, we only needed to pay 3 Euro for all. Can you help to figure out how man
children? How many adults?
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Solution:

Let denote x as a number of children, and y as a number of adults. Simple linear
equations can be derived

2x+ 3y = 7x+ y = 3

It is trivial to have roots as follow

x = 2y = 1

In matrix representation, we can establish

A =

[

2 3
1 1

]

X =

[

x

y

]

B =

[

7
3

]

Then,

AX = B ≡

[

2 3
1 1

] [

x

y

]

=

[

7
3

]

We have X = A−1AX = A−1B. How to find the inverse A−1 will be discussed later,
let assume that a predetermined calculation gives

A−1 =

[

−1 3
1 −2

]

Hence,

[

x

y

]

=

[

−1 3
1 −2

] [

7
3

]

=

[

2
1

]

Matrix representation helps to have a nice expression when having a higher di-
mensionality. For example, n linear equations to be solved for n variables X =
{x1, x2, .., xn}, B = {b1, b2, .., bn}.
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A =









a11 a12 .. a1n
a21 a22 .. a2n
.. .. .. ..

an1 an2 .. ann









We still come back to the familiar form: AX = B.

3.1 Remarks on Matrix

An example of 2x2 Matrix A as follow

A =

[

a b

c d

]

Determinant of A

det(A) = |ad− bc|

Transpose of A

AT =

[

a c

b d

]

Inverse of A

A−1 =
1

ad− bc

[

d −b
−c a

]

Jacobian matrix

Jf = [
δf

δx1

· · ·
δf

δxn

] =





δf1
δx1

· · · δf1
δxn

· · · · · · · · ·
δfn
δx1

· · · δfn
δxn





Matrix Differentiation
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δ(uTv)

δx
= uT δv

δx
+ vT

δu

δx

It is trivial to obtain

δf

δx
= xT (A+ AT )

where
f = xTAx

Dot Product of two vectors: u(u1, u2, u3) and v(v1, v2, v3

u.v = u1v1 + u2v2 + u3v3 (3.3)

Cross product

u× v =





u2v3 − u3v2
u3v1 − u1v3
u1v2 − u2v1



 (3.4)

Or: u× v = (u2v3− u3v2)~i+ (u3v1− u1v3)~j + (u1v2− u2v1)~k where (~i,~j,~k) are basic
unit vectors of the working coordinate.

For a convenient in expression, we also denote

u× =





0 −u3 u2

u3 0 −u1

−u2 u1 0



 (3.5)

So that u× v = u×v

3.1.1 Inverse of a matrix A

A very common way of finding A−1 is to use Row Operation, so called Gauss-
Jordan. The basic idea is that if a transformation P which transforms [A|I] to
[U |V ]

P ∗ [A|I] = [U |V ]
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Or

P ∗ A = U

P ∗ I = V

If U = I, then

P = A−1

P = V

Therefore, we need to use Row Operation to transform [A|I] to be [I|V ], and thus
A−1 = V . For example,

[A|I] =

[

2 3 1 0
1 1 0 1

]

row1 = -1*(row1 - 3* row2)

[A|I] =

[

1 0 −1 3
1 1 0 1

]

row2 = row2 - row1

[A|I] =

[

1 0 −1 3
0 1 1 −2

]

Therefore

A−1 =

[

−1 3
1 −2

]

Note that not all matrix has an inverse, for example

A =

[

3 4
6 8

]

det(A) = 0, so called a Singular Matrix.
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3.1.2 Null Space

Definition 1. The null-space of m × n matrix A, denoted Null A, is the set of all
solutions to the homogeneous equation Av = 0.

Intuitively, if mapping V → W. Null space or Kernel L is mapping to O.

V

L

Im(V)

O

W

Figure 3.1: Mapping V to W results in Im(V) where the image of L is just one point
O.

kerL = {v ∈ V |l(v) = 0} (3.6)

dim(kerL) + dim(imL) = dim(V )

Assume that (v1, v2) are roots of Eq.3.1, then

A ∗ v1 = BA ∗ v2 = B

hence, A(v1 − v2) = 0 is the root of null-space. Therefore, if we can find v =
{v1, v2, .., vn} are the roots of null-space, and a specific root X0 of Eq.3.1. The roots
of Eq.3.1 can be found as {Xi} = X0 + {vi}.

Finding a Null space

Come back to a similar idea in finding the inverse of a matrix, let consider a trans-
formation P which transforms [A|I] to [U |V ]

P ∗ [A|I] = [U |V ]
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Or

P ∗ A = U

P ∗ I = V

Thus P = V , then vTi A
T = uT

i or Avi = ui. Therefore, if ui = 0 then Avi = 0→ vi
is a basic of Null space.

3.1.3 Orthogonal and Orthonormal

Orthogonal: UTV = 0
Orthonormal: UTV = 0 and UTU = V TV = I

3.2 Eigenvalue and Eigenvector

Definition 2. Eigenvector: Special vector which multiplies with A will result in its
scaling, but no direction change.

Av = λv (3.7)

λ is called eigenvalue. Note that, it is trivial to prove that

A2nv = λ2nv

The meaning of finding eigenvector/eigenvalues is to find a basic formation of matrix
A, which helps to be easier or convenient in processing optimization problems related
to a matrix operation.

Even though eigenvalue and eigenvector are mentioned in many books and used in
many maths-related solutions, a common concern from students ”I am not sure that
I really understand Eigenvalue and Eigenvector in my real life, how it looks like”.
To give readers a clear example, let consider a matrix A which transform a Circle
into an Ellipse (major axis a, minor axis b, and angle θ). For an easy mathematics
representation, let consider the centre of the Circle is the origin, otherwise
just simply adding the translation of the centre against the origin. Each (x′, y′) on
the Ellipse can be determined through (x, y) on the Circle, expressed as follow,
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x′ =
xcosθ − ysinθ

a

y′ =
xsinθ + ycosθ

b

Or

[

x′

y′

]

=

[

acosθ −asinθ
bsinθ bcosθ

] [

x

y

]

For each point (x′i, y
′

i) of the Ellipse, corresponding to a point (xi, yi) of the Circle,
a vector which connects the centre of Ellipse to that point is called vi. Due to the
fact that we choose the origin to coincide to the centre, the vector coordinate will
be the same as the coordinate of the point.

Let denote,

A =

[

acosθ −asinθ
bsinθ bcosθ

]

vi =

[

x′

y′

]

Xi =

[

x

y

]

vi = AXi

For each vector Xi, an angle between Xi and the axis x is denoted by θi, we have
xi = cosθi and yi = sinθi

vi = AXi =

[

acosθ −asinθ
bsinθ bcosθ

] [

cosθi
sinθi

]

=

[

acosθcosθi − asinθ sin θi
bsinθcosθi + bcosθsinθi

]

Thereby, any vector Xi pointing to the same direction of vector u or v, at θi =
−θ + PI or θi = −θ respectively, multiply with A will result in a scale change, but
no direction change. Therefore, (u, v) are eigenvectors of A.
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λ1 

λ12

λ1 

λ2Ay 

Ax

y

x
A v = λ1 v

A u = λ2 u

x

y

Figure 3.2: a)Left: These are not eigenvectors b)Right: Av lines up with v at
eigenvectors

Fig.3.2 shows two examples: Left) Ax and Ay changes the direction of vector x and
y respectively. Hence, according to the Definition 2 those are not eigenvector of A;
Right) Av and Au line up with v and u respectively, which means multiplying A
with u or v only changes its scale, but not the direction of the vector, and thus (u, v)
are eigenvectors of A.

A gentle remind of how to find eigenvectors, eigenvalues through the following ex-
ample,

A =

[

0.8 0.3
0.2 0.7

]

det

[

0.8− λ 0.3
0.2 0.7− λ

]

= λ2 − 1.5λ+ 0.5 = (λ− 1)(λ− 0.5) = 0

Thus, eigenvalues of A are λ1 = 1, λ2 = 0.5. For λ1 = 1,

0.8u+ 0.3v = u

0.2u+ 0.7v = v

v1 =

[

0.6
0.4

]
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Similarly

v2 =

[

1
−1

]

3.3 Singular Value Decomposition (SVD)

Definition 3. SVD is a factorization of a matrix: A = U
∑

V T . Where U, V are
orthogonal, and

∑

is diagonal.

Why and when do we need an SVD of a matrix? Let come back to our very first
aim of solving Eq.3.1: AX = B. We need to find the inverse A−1, meanwhile it
was mentioned before that not all matrix A exists its inverse matrix. For an ill-
conditioned matrix A, a standard approach of finding A−1 ends up with different
results per process or uncontrollable solution.

What is an ill-conditioned matrix?

Given an invertible matrix A, and thus we have A−1 existing. Let come back to our
Eq.3.1 with an assumption of having some noise from our collected data, denoted
as δb.

x = A−1(b+ δb) = A−1b+ A−1δb

Since x̄ = A−1b is the true solution, we have the error of the solution is δx = A−1δb.
The error in δb may get amplified by A−1 and produce a large error in x. In those
situations, where large error is a subjective criterion, we say the problem is ill-posed
or ill-conditioned.

In such cases where A−1 does not exist or ill-conditioned A, it is better to approxi-
mate A−1. This ends up with the idea of SVD. In practice, since SVD is relatively
fast in implementation, users might prefer to use SVD regardless of considering if a
matrix is ill-conditioned or non-invertible.

First, it is not hard to find an orthogonal basic for the row space, using the Gram-
Schmidt process (https://en.wikipedia.org/wiki/Gram. Thereby, we can think of a
matrix A as a linear transformation which takes a vector vi in its row space to a
vector ui in its column space, where Avi = δiui .
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A[v1 v2 ... vn] = [δ1u1 δ2u2 ... δnun] = [u1 u2 ... un]









δ1
δ2

...

δn









Or

AV = U
∑

with u1, u2, ..un an orthogonal basic of the column space of A, and v1, v2, ..vn an
orthogonal basic of the row space of A. Due to orthonormal property V TV =
I, UTU = I, we can derive A = U

∑

V T .

We have just explained why a matrix A can be expressed in such form. We now
learn why such form is making our life much easier in finding an approximation of
A−1.

A = U
∑

V T

Hence

ATA = V
∑

UTU
∑

V T = V
∑

V T

This is in the form of Q
∑

QT , which can be diagonalized to find V . The column of
V are eigenvectors of ATA, and the eigenvalues of ATA are the values δ2i . To find
U , we do the same thing with AAT . Please see some numerical examples from Prof.
Strang’s lectures [17].

Real-life example

Given a set of N 3D points, {(xi, yi, zi)}
N
i=1

, your task is to find a best fit plane
established from those points. A mathematics expression of a plane is

ax+ by + cz + d = 0
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Figure 3.3: Plane Fitting from a given set of 3D points

This is over-determined because the solution space is three-dimensional, but the
above description uses four variables. By constraining the solution space, we can
assign c = 1, hence

ax+ by + d = −z

for all the above N 3D points,









x1 y1 1
x2 y2 1
· · · · · · · · ·
xN yN 1













a

b

c



 =









−z1
−z2
· · ·
−zN









Let denote

A =









x1 y1 1
x2 y2 1
· · · · · · · · ·
xN yN 1









X =





a

b

c





B =









−z1
−z2
· · ·
−zN









We come back to the familiar linear equation: AX = B, and our task is to find X.

Applying SVD to have A = U
∑

V T , and thus A−1 = V
∑

−1
UT .

31



Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

X = V

−1
∑

UTB

Applying the above technique to refine the depth information given by a RGBD
camera, shown in Fig.3.4

Figure 3.4: Example of Planar Fitting: (b) Given a discrete and noisy set of 3D
points by RGBD camera; (c) Least Square Solution using SVD refines and fulfill
multiple planar surface to result in a much dense 3D reconstruction of environment;
(a) Image of environment; (d) 3D rendering of environment using (a) and (c).
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