
Chapter 4

3D Geometry and Camera Model

In this chapter, we will learn basics of Geometry, particularly how an object motion
formulated in maths. Mathematically, this sounds simple in an Euclidean space,
nevertheless motion analysis is, in real-life, a very complex problem due to many
aspects which arise differently from different sensors in use. Typically motion anal-
ysis is also a complex problem for human vision (human eye and brain), because
human vision system works in a projective space, but not Euclidean space. Why is
this matter? Projective space means viewing scenes from a virtual single perspective
view, which means depths or scales are somehow ambiguous. This is why you can
tell roughly how things moving but exactly talking about speeds and distances is
difficult. Similar to human vision system, camera also works in a projective space,
and thus facing a similar challenge.

In fact, since sensors are mounted on a target (robot, car, human-human eyes, etc.),
it is naturally that its view is similar to a virtual single perspective view, except for a
combination of sensors. However, an active sensor (LIDAR, RADAR, SONAR, etc.)
can still achieve a high accurate distance and speed of a moving object because
of using its “active” signal (Laser, radio sound, ultrasound, etc.). Unfortunately,
active sensors usually provide a sparse data, and just about collecting a particular
information of objects, for example 3D structure from laser scanning. Meanwhile,
vision system can provide very detailed information of objects which are straight-
forward inferred by human interpretation. Given those facts, it has been a trend
in Robotics and Autonomous Car communities to exploit a combination of both
systems. This leads to a need of understanding a Geometric mapping between
different spaces, different coordinates and different systems, the so called 2D-3D
mapping. For that aim, we will learn some basic knowledge of Camera Systems and
its homogeneous coordinate in this chapter.

33

Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

4.1 3D Geometry: Rigid-body Motion

This section will contain a sufficient knowledge of 3D geometry with Lie Algebra to
understand 3D vision in deep, but not including all related topics on 3D Geometry
and Lie Algebra. Therefore, if you wish to get deeper into 3D geometry and Lie
Algebra, please refer to [9] or other pure mathematics books [7].

Consider an object moving in a Euclidean space. In order to describe its motion
one should specify the trajectory of every small piece, or even every single point, on
the object. For example, different parts (hands, head, legs, etc.) of human body
move differently, so it is not correct to describe all at once. In fact each separate
part moves consistently, so such an object like human body consists of many parts
which move consistently, so called rigid-body. For a simplification, we only discuss
a motion of a rigid-body in this chapter.

A rigid-body motion in a Euclidean space can be 1) Translation; 2)Rotation; 3)
Combination of both Translation and Rotation, see Fig.4.1.

xx

y

x

x

y y

Figure 4.1: Illustration of rigid-body motion

Translation vector T (t1, t2, t3). If a rigid-body, denoted as O1, has a pure translation
of T to a new position O2, then each point on O2 corresponds to a point in O1

following the below expression

P2 = P1 + T

34

Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

If R is a 3× 3 rotation matrix, similar to the case of having a pure rotation

P2 = RP1

In the case of having a combination of rotation and translation, we have

P2 = RP1 + T (4.1)

4.1.1 Rotation in 3D space

Remember that in high school maths, we usually deal with an example of a Rotation
Matrix which represents a rotation about the Z-axis by an angle θz as follow

Rz(θz) =





cosθz −sinθz 0
sinθz cosθz 0

0 0 1





How about the case of having an arbitrary rotation? Any arbitrary rotation can be
decomposed into three rotation Rx, Ry, Rz where

R = RzRyRx

Rx(θx) =





1 0 0
0 cosθx −sinθx
0 sinθx cosθx





Ry(θy) =





cosθy 0 sinθy
0 1 0

−sinθy 0 cosθy





Note that we already decompose a transformation into a combination of a pure
rotation and a pure translation. Thereby, a rotation should keep the same shape or
scale of the object. If we express R into column representation: R = [r1 r2 r3],
then r1, r2, r3]form an orthonormal frame:

rTi rj =

{

1 for i = j
0 for i 6= j

Hence

35

Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

RTR = I

Rotation in 3D space, which transform axes Ox, Oy, Oz into new axes Ou, Ov, Ow,
can be decomposed into 3 rotations against three Euclidean axes X, Y, Z. In fact,
it is sufficient to know the transformations from Ox, Oz to Ou, Ow, the remaining
transformation from Oy to Ov can be derived from the first two.

4.1.2 Derivation of Rodrigues Rotation Matrix

Subsection 4.1.1 shows a rigorous representation of a rotation matrix. In real-life
problems, we commonly observe a rotation of a rigid-body object around a fixed
axis, see Fig.4.1.2. Since the fixed axis does not coincide with our working Euclidean
coordinate, to analyse a motion of a part of the rigid-body, we need to decompose
the motion of it into three rotations Rx, Ry, Rz and three translation Tx, ty, Tz. Let
assume that Doener is rotated slowly at the beginning and faster later when it is
almost done. Speed analysis will involve taking a derivative of such transformation,
which will end up with a quite complex and ugly maths.

u

b’

b

c

a

p

O

θ

Pp’

P’

Figure 4.2: Left: Grilling Doener; Right: Rotating a vector p of θ degree around the
axis u

On the other hand, one might see that the object is rotating around the fixed axis
u, and thus any point P on the object is just rotating around u from a distance b.
Therefore, it is trivial to express its speed in time. For that aim, the rotation must

36

Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

be a function of θ. Let denote a vector p from the origin O to P , after a rotation θ
around u we have p′.

Note that a dot product of u, p can be described as

(u.p) = uTp = ||u||||p||cosθ = ||p||cosθ

The projection of vector p on u is represented by a = uuTp, u is a unit vector.

a = u(u.p) = uuTp =





u1

u2

u3





[

u1 u2 u3

]





p1
p2
p3





Using basic vector operations in 3D space, we have







a = uuTp
c = u× p

b = p− a = (1− uuT)p

Where (×) is a cross product, mentioned in Equation 3.4.

Rotated version of p is p′

p′ = a+ b′ = a+ bcosθ + csinθ = uuTp+ (1− uuT)pcosθ + u× psinθ

p′ = [Icosθ + (1− cosθ)uuT + u×sinθ]p

and thus we end-up with the Rodrigues form

R = Icosθ + (1− cosθ)uuT + u×sinθ (4.2)

Note that Icosθ + (1− cosθ)uuT is a symmetric matrix. Meanwhile u×sinθ is anti-
symmetric matrix, see definition of a cross-matrix in Equation 3.5.

Hence, it is trivial to derive: R−RT = 2u×sinθ, and trace(R) = 3cosθ+(1−cosθ) =
2cosθ + 1. Or,

cosθ =
r11 + r22 + r33 − 1

2

37

Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

4.1.3 Connection to Lie Group SO(3)

Equation 4.2 in matrix representation is

R = cosθ





1 0 0
0 1 0
0 0 1



+(1−cosθ)





u2
1 u1u2 u1u3

u1u2 u2
2 u2u3

u3u1 u3u2 u2
3



+sinθ





0 −u3 u2

u3 0 −u1

−u2 u1 0





Or,

R =





1 0 0
0 1 0
0 0 1



+(1−cosθ)





u2
1 − 1 u1u2 u1u3

u1u2 u2
2 − 1 u2u3

u3u1 u3u2 u2
3 − 1



+sinθ





0 −u3 u2

u3 0 −u1

−u2 u1 0





Note that u is a unit vector, thus u2
1 + u2

2 + u2
3 = 1,

R = I + sinθu× + (1− cosθ)u2

×
(4.3)

A matrix ω× is called a skew symmetric matrix if it is written in the following form

ω× =





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0





So u× is a special a skew symmetric matrix which has the length of 1. For a generic
purpose, let denote a skew matrix ω× = θu×. It is trivial to derive the following
property of a skew matrix

ω3

×
= −(ωTω)ω× (4.4)

where ω = [ω1 ω2 ω3]
T , and ωTω = θ2

Re-write the Rodrigues as follow

R = I +
sinθ

θ
ω× +

1− cosθ

θ2
ω2

×
(4.5)

When θ is very small, applying Taylor expansion on Equation 4.5 we have

38

Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

R = I + (1−
θ2

3!
+

θ4

5!
+ ...)ω× + (

1

2
−

θ2

4!
+

θ4

6!
+ ...)ω2

×

Or,

R = I + (
∞
∑

i=1

(−1)iθ2i

(2i+ 1)!
)ω× + (

∞
∑

i=1

(−1)iθ2i

(2i+ 2)!
)ω2

×

From the Property 4.4, we have

ω2i+1

×
= (−1)iθ2iω×

ω2i+2

×
= (−1)iθ2iω2

×

Therefore

R = exp(ω×) = I +
∞
∑

i=1

[

ω2i+1
×

(2i+ 1)!
+

ω2i+2
×

(2i+ 2)!

]

(4.6)

exp(ω×) is called exponential map in Lie Algebra.

Definition 4. The exponential map, which takes a skew symmetric matrix to a
rotation matrix, is simply the matrix exponential over a linear combination of the
generators

For every ω× where ω ∈ R
3, we can re-write the skew symmetric matrix as follow

ω× = ω1G1 + ω2G2 + ω3G3

where

G1 =





0 0 0
0 0 −1
0 1 0



 , G2 =





0 0 1
0 0 0

−1 0 0



 , G3 =





0 −1 0
1 0 0
0 0 0





Definition 5. The 3D rotation group, often denoted SO(3), is the group of all
rotation about the origin of 2D Euclidean space R under the operation of composition
or exponential map. In Lie Algebra, SO(3) is a set of 3×3 skew-symmetric matrices.

We have already derived connection between Lie group SO(3) to a rotation matrix
in 3D space.

39

Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

4.1.4 Lie Group SE(3)

Representation

When taken into account a whole transformation of a rigid-body, an additional
element related to the translation is added

R ∈ SO(3), t ∈ R
3

C =

(

R t
0 1

)

(4.7)

C−1 =

(

RT −RT t
0 1

)

For each vector x,

x = (x y z 1)T ∈ RP
3

C.x =

(

R(x y z)T + t
1

)

Definition 6. In Lie Algebra, SE3(3) is a set of 4 × 4 matrices corresponding to
differential translations and rotations (as in SO(3)).

Let define some generators as below

G1 =









0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0









, G2 =









0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0









, G3 =









0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0









G4 =









0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0









, G5 =









0 0 1 0
0 0 0 0

−1 0 0 0
0 0 0 0









, G6 =









0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0









(u ω)T ∈ R
6

40

Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

ξ = u1G1 + u2G2 + u3G3 + ω1G4 + ω2G5 + ω3G6 ∈ SE(3)

ξ =

[

ω× t
0 0

]

Exponential Map

exp(ξ) = exp

(

ω× u
0 0

)

exp(ξ) = I +

(

ω× u
0 0

)

+
1

2!

(

ω2
×

ω×u
0 0

)

+
1

3!

(

ω3
×

ω2
×
u

0 0

)

+ ...

Rotation block is the same as for SO(3)

exp

(

ω× u
0 0

)

=

(

exp(ω×) V u
0 1

)

(4.8)

Where

V = I +
∞
∑

i=0

(

ω2i+1
×

(2i+ 2)!
+

ω2i+2
×

(2i+ 3)!

)

V = I +

(

∞
∑

i=0

(−1)iθ2i

(2i+ 2)!

)

ω× +

(

∞
∑

i=0

(−1)iθ2i

(2i+ 3)!

)

ω2

×

V = I +
1− cosθ

θ2
ω× +

θ − sinθ

θ3
ω2

×

4.1.5 Sim(3): Similarity Transformation in 3D space

Representation

Similarity transformation are combinations of rigid transformation and scaling, de-
noted as Sim(3). Sim(3) has a nearly identical representation of to SE(3) with an
additional scale factor:

41

Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

R ∈ SO(3), t ∈ R
3, s ∈ R

T =

(

R t
0 s−1

)

∈ Sim(3) (4.9)

It is trivial to derive

T−1 =

(

RT −sRT t
0 s

)

T1T2 =

(

R1R2 R1t2 + s−12 t1
0 (s1s2)

−1

)

T is commonly used in computer vision to encode the scaling s, so called rigid
transformation followed by scaling.

x = (x y z 1)T ∈ RP
3

T.x =

(

R(x y z)T + t
s−1

)

The generators of Sim(3) include all generators of SE(3) and additionally add

G7 =









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1









An element of Sim(3) is a combination of generators

(u ω λ)T ∈ R

T = u1G1 + u2G2 + u3G3 + ω1G4 + ω2G5 + ω3G6 + λG7 ∈ Sim(3)

42

Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

Exponential Map

Similar to SE(3), we have

δ = (u ω λ) ∈ Sim(3)

exp(δ) = exp

(

ω× u
0 −λ

)

exp(δ) = I+

(

ω× u
0 λ

)

+
1

2!

(

ω2
×

ω×u− λu
0 λ2

)

+
1

3!

(

ω3
×

ω2
×
u− λω×u+ λ2u

0 −λ3

)

+...

exp

(

ω× u
0 −λ

)

=

(

exp(ω×) V u
0 exp(−λ)

)

(4.10)

V =
∞
∑

n=0

n
∑

k=0

ωn−k
×

(−λ)k

(n+ 1)!

V =
∞
∑

k=0

∞
∑

n=k

ωn−k
×

(−λ)k

(n+ 1)!

V =
∞
∑

k=0

∞
∑

j=0

ωj
×
(−λ)k

(j + k + 1)!

Remind the property of the skew symmetric matrix ω×: θ
2 = ωTω, and thus

V =

(

∞
∑

k=0

(−λ)k

(k + 1)!

)

I +
∞
∑

k=0

(−λ)k
∞
∑

i=0

[

ω2i+1
×

(2i+ k + 2)!
+

ω2i+2
×

(2i+ k + 3)!

]

V =

(

∞
∑

k=0

(−λ)k

(k + 1)!

)

I+

(

∞
∑

k=0

∞
∑

i=0

(−1)iθ2i(−λ)k

(2i+ k + 2)

)

ω×+

(

∞
∑

k=0

∞
∑

i=0

(−1)iθ2i(−λ)k

(2i+ k + 3)!

)

ω2

×

43

Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

4.2 Cameras and Vehicle Coordinate Transforma-

tion

4.2.1 Camera Mounting

camera

Xc
Yc

Zc

X

Y

Xv

Yv

Zv

Xcm
Calibration View Point

System-Mounting View Point.

Same convention as of Vehicle Coordinate.

Mapping to the extrinsic

Xcm = -Zc Roll

Ycm = -Yc Pitch

Zcm = -Xc Yaw

Ycm

Zcm

Figure 4.3: System Coordinate Convention

Fig.4.3 shows an example of robotic system or autonomous car system which mounts
a camera in it. Other active sensors, including LIDAR, RADAR, SONAR, IMU, etc.
can be mounted around the vehicle to obtain 3D or object position information, see
an example of AMOR in Fig.2.1.

In common, rotation directions, Rx, Ry, Rz, follow counter clock-wise. I myself pre-
fer to use clock-wise - just a personal habit, nothing to say good or bad in this matter.

4.2.2 Transformation between Coordinates

If choosing the middle of the rear axial of the ego-vehicle as the origin of our au-
tonomous system, it is required to know the relative pose (position and rotation) of
all sensors against the origin, so called the origin of vehicle. Assume a 3x3 rotation
matrix RV 2C and a translation vector TV 2C are to form the transformation from a

44

Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

camera to the vehicle coordinate. We will have [RC2V |TV 2C] are the transformation
from vehicle back to the camera coordinate, where due to orthonormality

RC2V = R−1V 2C

TC2V = −TV 2C

A 3D point P V (xv, yv, zv) in vehicle coordinate, when transformed to camera coor-
dinate we have

PC = RC2V P
V + TC2V

Vice versa

P V = [RC2V]
−1PC − [RC2V]

−1TC2V

4.3 Mapping from 2D image to 3D camera coor-

dinate system

Camera is structurally the same the eye.

CS4243 Camera Models and Imaging 5

lens

lens | cornea

sensor | retina

Figure 4.4: Similarity between Cameras and Eyes

45

Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

In rough, a camera consists of an imaging sensor, lens, and other mechanical and
electronic components. Similar to human eye, a camera will use its lens to gather all
light information from environment to project into its image plane, then converted
to image data by an imaging sensor. Raw image data from a camera is a flipped,
upside down, image of the world scene. There is an Image Signal Processor (ISP)
chip inside the camera, which, in some cases, include an inverter to flip back the
image to be in a normal form as human eyes see, see Fig.4.4.

At an initiative state, to be easy for understanding and implementing, a camera is
designed following a Pin-hole model,
please read Pinhole Camera 1 for a basic understanding. Later, due to different
requirements and applications, more sophisticated lens and cameras have been in-
troduced, remarkably Fish-eye lens, please read 2.

4.3.1 Pinhole-Camera Model

A pinhole imaging model is illustrated in Fig.4.5. The distance from the real image
plane to the centre of camera, or often called centre of projection, is called Focal
Length, denoted by f . For an easy intuition, we mainly work on the virtual image
plane which is a mirror of the real image plane with respect to the centre of projection
of the camera O. The distance from the virtual image plane to the centre of camera
is also f . From now on, let forget the real image plane and call the virtual
image plane as the image plane. This helps us be easier to imagine what camera
sees in a similar manner as of human-eyes.

A point pi(x, y) in an image is corresponding to a world point PW (u, v, w), or a point
PC(x, y, z) in the camera coordinate. It is clear that PC and PW refer the the
same physical point in world, but just different representations in the camera
coordinate and the world coordinate, respectively. Hence, PC belongs to the line
extension of the vector ~Op, see Fig.4.5. Assume that I(xc, yc) is the centre of the

image, then I(xc, yc) lies on the optical axis ~OZ.

From basic geometric relations between the image pi(x, y) and the object PC(X, Y, Z)

[

(x− xc)δx
(y − yc)δy

]

=
f

Z

[

X
Y

]

Or,

1https://en.wikipedia.org/wiki/Pinhole_camera
2https://en.wikipedia.org/wiki/Fisheye_lens

46

Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

Z

X
Y

W

y

x

U

V

Camera Coordinate

Virtual Image
World Coordinate

y*

x*

Image Plane

O f (xc,yc)

P

p

Figure 4.5: The Pinhole Imaging Model

[

x
y

]

=





(fδx)
X
Z

(fδy)
Y
Z



+

[

xc

yc

]

(4.11)

Where (δx, δy) denote pixel sizes. Such multiplication with pixel sizes converts from
the image coordinate to image plane coordinate - this fundamental difference be-
tween image and image plane is usually misunderstood by students. Talking about
images, you are working on image coordinate where distance is measured by a num-
ber of pixels - this has nothing to do with the camera coordinate in Euclidean space.
Thus, to link them, we first need such transformation to the image plane coordinate
in Euclidean space. In most of computer vision books, you don’t see such pixel size
item. This is because they assume that the camera has square pixels, which is not
necessary the case in real-life cameras.

Let denote xnorm = X/Z, ynorm = Y/Z, then (xnorm, ynorm) is a projection of the
point PC on a normalized image plane (focal length = 1). Re-write Equation 4.11
with subject to (xnorm, ynorm),





x
y
1



 =





fδx 0 xc

0 fδy yc
0 0 1









xnorm

ynorm
1



 (4.12)

Let denote,

47

Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

K =





fδx 0 xc

0 fδy yc
0 0 1





K matrix represents intrinsic parameters of the camera. In fact, camera coordinate
system might be skewed, due to some manufacturing errors, so the angle θ between
two image axes is not equal to 900, but very close.

y

x, x-norm

y-norm

θ

y-norm

x-norm

y

x

Imperfection in a real Pinhole Camera Imperfection in a real Fisheye Camera

Figure 4.6: Imperfection or Manufacturing Error in a real Camera

From Fig.4.6, it is trivial to show that

{

x− xc = (fδx)xnorm − (fδx)cotθ

y − yc =
fδy
sinθ

ynorm
(4.13)

Hence, Kmatrix will be

K =













fδx −fδxcotθ xc

0 fδy
sinθ

yc

0 0 1













(4.14)

Finally, either lens are not perfect or installation of camera-components is not per-
fect, which creates distortions, and thus K should be much more complicated than
Equation 4.14. In fact, the problem of estimating the distortions of Pinhole camera
is a small subset of a general problem of estimating distortions of a Fisheye camera.
Therefore, we will re-visit this topic in Fisheye camera section later.

48

Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

4.3.2 Fisheye Camera: Scaramuzza Model

For Fisheye lens, we have many different models to approach or approximate the
mapping in and out between camera coordinate and world coordinates [12].

The following equations describe the process of mapping a pixel p = [x y]T in the
2D image coordinate system to a ray rp in the 3D camera coordinate system using
the model of Scaramuzza [16].

yimg

ximg
xcam

ycam

zcam

c

p

rp

O

Figure 4.7: Mapping a pixel p in the 2D image coordinate system to a ray rp in the
3D camera coordinate system. According to the Scaramuzza’s model [16], x and y
are components in the image coordinate system that denote row and column of a
pixel, respectively.

First, the pixel coordinates are normalized by subtracting the principal point c =
[xc yc]

T , and then applying the inverse affine transform A−1, where the matrix A is
expressed as

A =

[

mC mD

mE 1

]

(4.15)

The pixel coordinates after normalization are

p′ =

[

x′

y′

]

= A−1(p− c) =
1

mC −mDmE

[

1 −mD

−mE mC

]

(

[

x
y

]

−

[

xc

yc

]

)

. (4.16)

We calculate next the n-order polynomial P (ρ) = a0+a1ρ+a2ρ
2+ · · ·+anρ

n, using
the L2 norm of the normalized pixel p′ as the argument ρ:

ρ = ‖p′‖ =
√

x′2 + y′2. (4.17)

49

Fundamental Maths to 3D Vision @copyright: Duong-Van Nguyen

Finally, we obtain the ray rp in the 3D camera coordinate system as

rp ∝





x′

y′

P (ρ)



 . (4.18)

Typically n = 4 is good enough to model most of Fisheye lens in the market.

To be updated ...

50

